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» Aviation induced warming includes CO, (<35%) and non-CO, 7 \—\Q
Cost-optimal ~_

effects (>65%) from NO,, H,O, contrails and direct aerosols [1]. e R
- The climate impact of non-CO, emissions are characterised by

trajectory

the meteorology, emission location and time [2].

- Algorithmic Climate Change Functions (aCCFs) [3] are | / [ [ .- Kr‘r‘i;al ﬂ
response models that use meteorological data to estimate the . S——"
climate impact of emissions at a given location and time. aircraft trajectory P

- We need to verify the effectiveness of aCCFs in generating Departure
green trajectories that avoid climate sensitive regions.

« The focus here is specifically on verifying O, aCCFs which are
expected to predict NO, impact on Ozone. Simulation setup

#° " Ozone change

I

¥ Ozone aCCFs 2¥ Expected results

« 0O, aCCFs are dependent on temperature and geopotential: At the end of the project, the following is expected:
aCCFo,(T,®) = B0+ 1T + 2P + B3TP « The extent to which O; aCCFs are useful in
- _ S N predicting NO,-O; impact from aviation re-routing
- The verification process will provide insight on the capability of orocedures.
O, aCCFs in predicting NO, effects on Ozone from optimised
air traffic. - Radiative forcing of Ozone from climate-optimised air

traffic is lower than for cost-optimised traffic at the
end of the simulation.
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_ _ o _ for the use in eco-efficient flight planning.
« The flight traffic emissions are tracked and used in a 4-month
chemistry simulation.
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